首页 | 本学科首页   官方微博 | 高级检索  
     


Electron transfer in chromaffin-vesicle ghosts containing peroxidase.
Authors:G J Harnadek  E A Ries  D G Tse  J S Fitz  D Njus
Affiliation:Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
Abstract:In chromaffin vesicles, the enzyme dopamine beta-monooxygenase converts dopamine to norepinephrine. It is believed that reducing equivalents for this reaction are supplied by intravesicular ascorbic acid and that the ascorbate is regenerated by importing electrons from the cytosol with cytochrome b-561 functioning as the transmembrane electron carrier. If this is true, then the ascorbate-regenerating system should be capable of providing reducing equivalents to any ascorbate-requiring enzyme, not just dopamine beta-monooxygenase. This may be tested using chromaffin-vesicle ghosts in which an exogenous enzyme, horseradish peroxidase, has been trapped. If ascorbate and peroxidase are trapped together within chromaffin-vesicle ghosts, cytochrome b-561 in the vesicle membrane is found in the reduced form. Subsequent addition of H2O2 causes the cytochrome to become partially oxidized. H2O2 does not cause this oxidation if either peroxidase or ascorbate are absent. This argues that the cytochrome is oxidized by semidehydroascorbate, the oxidation product of ascorbate, rather than by H2O2 or peroxidase directly. The semidehydroascorbate must be internal because the ascorbate from which it is formed is sequestered and inaccessible to external ascorbate oxidase. This shows that cytochrome b-561 can transfer electrons to semidehydroascorbate within the vesicles and that the semidehydroascorbate may be generated by any enzyme, not just dopamine beta-monooxygenase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号