首页 | 本学科首页   官方微博 | 高级检索  
     


A High‐Energy Density Asymmetric Supercapacitor Based on Fe2O3 Nanoneedle Arrays and NiCo2O4/Ni(OH)2 Hybrid Nanosheet Arrays Grown on SiC Nanowire Networks as Free‐Standing Advanced Electrodes
Authors:Jian Zhao  Zhenjiang Li  Xiangcheng Yuan  Zhen Yang  Meng Zhang  Alan Meng  Qingdang Li
Affiliation:1. Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial, College of Electromechanical Engineering, College of Sino‐German Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China;2. State Key Laboratory Base of Eco‐chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China
Abstract:In this paper, a novel freestanding core‐branch negative and positive electrode material through integrating trim aligned Fe2O3 nanoneedle arrays (Fe2O3 NNAs) is first proposed with typical mesoporous structures and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays (NiCo2O4/Ni(OH)2 HNAs) on SiC nanowire (SiC NW) skeletons with outstanding resistance to oxidation and corrosion, good conductivity, and large‐specific surface area. The original built SiC NWs@Fe2O3 NNAs is validated to be a highly capacitive negative electrode (721 F g?1 at 2 A g?1, i.e., 1 F cm?2 at 2.8 mA cm?2), matching well with the similarly constructed SiC NWs@NiCo2O4/Ni(OH)2 HNAs positive electrode (2580 F g?1 at 4 A g?1, i.e., 3.12 F cm?2 at 4.8 mA cm?2). Contributed by the uniquely engineered electrodes, a high‐performance asymmetric supercapacitor (ASC) is developed, which can exhibit a maximum energy density of 103 W h kg?1 at a power density of 3.5 kW kg?1, even when charging the device within 6.5 s, the energy density can still maintain as high as 45 W h kg?1 at 26.1 kW kg?1, and the ASC manifests long cycling lifespan with 86.6% capacitance retention even after 5000 cycles. This pioneering work not only offers an attractive strategy for rational construction of high‐performance SiC NW‐based nanostructured electrodes materials, but also provides a fresh route for manufacturing next‐generation high‐energy storage and conversion systems.
Keywords:asymmetric supercapacitors  Fe2O3 nanoneedle arrays  high‐energy  NiCo2O4/Ni(OH)2 hybrid nanosheet arrays  SiC nanowires
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号