首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Liberation of the intramolecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone.
Authors:E Tanaka  T K Nemoto  T Ono
Institution:Department of Oral Biochemistry, Nagasaki University School of Dentistry, Nagasaki, Japan.
Abstract:The molecular chaperone function of HSP90 is activated under heat-stress conditions. In the present study, we investigated the role of the interactions in the heat-induced activation of HSP90 molecular chaperone. The preceding paper demonstrated two domain-domain interactions of HtpG, an Escherichia coli homologue of mammalian HSP90, i.e. an intra-molecular interaction between the N-terminal and middle domains and an intermolecular one between the middle and C-terminal domains. A bacterial two-hybrid system revealed that the two interactions also existed in human HSP90alpha. Partners of the interaction between the N-terminal and middle domains of human HSP90alpha could, but those between the middle and C-terminal domains could not, be replaced by the domains of HtpG. Thus, the interface between the N-terminal and middle domains is essentially unvaried from bacterial to human members of the HSP90-family proteins. The citrate synthase-binding activity of HtpG at an elevated temperature was solely localized in the N-terminal domain, but HSP90alpha possessed two sites in the N-terminal and other domains. The citrate-synthase-binding activity of the N-terminal domain was suppressed by the association of the middle domain. The complex between the N-terminal and middle domains is labile at elevated temperatures, but the other is stable even at 70 degrees C. Taken together, we propose the liberation of the N-terminal client-binding domain from the middle suppressor domain is involved in the temperature-dependent activation mechanism of HSP90 molecular chaperone.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号