首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell surface properties of ascites sublines of the 13762 rat mammary adenocarcinoma : Relationship of the major sialoglycoprotein to xenotransplantability
Authors:Anne P Sherblom  John W Huggins  Robert W Chesnut  Robert L Buck  Charlotte L Ownby  Gerald B Dermer  Kermit L Carraway
Institution:1. Department of Biochemistry, Oklahoma State University, Stillwater, OK 74074, USA;2. Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74074, USA;3. Department of Pathology, University of Southern California, Los Angeles, CA 90017, USA
Abstract:The relationship between cell surface sialoglycoprotein and xenotransplantation has been investigated in ascites sublines of the 13762 rat mammary adenocarcinoma. Two of the five sublines (MAT-C and MAT-C1) can be transplanted into mice. These two sublines also have the greatest amounts of total, trypsin-releasable and neuraminidase-releasable sialic acid. Chemical labeling using periodate treatment followed by 3H]borohydride reduction indicates that most of the protein-bound sialic acid is associated with a single major sialoglycoprotein (or family of glycoproteins) with a low mobility on polyacrylamide gels in dodecyl sulfate (SDS). This glycoprotein, denoted ASGP-1, is also labeled by lactoperoxidase and 125I, indicating its presence at the cell surface. Metabolic labeling with 3H]glucosamine shows that ASGP-1 is the major glycosylated protein in both xenotransplantable (MAT-C1) and non-xenotransplantable (MAT-B1) sublines, representing >70% of the protein-bound label in each. The labeling studies indicate that the non-xenotransplantable subline does not have a substantially greater amount of ASGP-1 on its cell surface. Likewise cationized ferritin labeling and transmission electron microscopy (TEM) do not show substantially greater amounts of negatively charged groups distributed along the cell surfaces of MAT-C1 than of MAT-B1 cells. The results indicate that the transplantation differences between these sublines cannot be explained solely by the presence of a major sialoglycoprotein at the cell surface.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号