首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius
Authors:Fin Loïc  Grebe Reinhard
Institution:Unité de Génie Biophysique et Médical, Université de Picardie, Cedex I, France. loic.fin@u-picardie.fr
Abstract:A computational fluid dynamics (CFD) method is presented to investigate the flow of cerebro-spinal fluid (CSF) in the cerebral aqueduct. In addition to former approaches exhibiting a rigid geometry, we propose a model which includes a deformable membrane as the wall of this flow channel. An anatomical shape of the aqueduct was computed from magnetic resonance images (MRI) and the resulting meshing was immersed in a marker-and-cell (MAC) staggered grid for to take into account fluid-structure interactions. The time derivatives were digitized using the Crank-Nicolson scheme. The equation of continuity was modified by introducing an artificial compressibility and digitized by a finite difference scheme. Calculations were validated with the simulation of laminar flow in a rigid tube. Then, comparisons were made between simulations of a rigid aqueduct and a deformable one. We found that the deformability of the walls has a strong influence on the pressure drop for a given flow.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号