首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies
Institution:1. Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;2. Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;3. Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan;4. Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
Abstract:BackgroundHigh-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy.MethodsScanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever.ResultsIn tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated.ConclusionsThis study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research.General significanceWe achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号