首页 | 本学科首页   官方微博 | 高级检索  
     


Amino Acid Derivatives as Bitter Taste Receptor (T2R) Blockers
Authors:Sai P. Pydi  Tyler Sobotkiewicz  Rohini Billakanti  Rajinder P. Bhullar  Michele C. Loewen  Prashen Chelikani
Affiliation:From the Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba R3E 0W4.;the §Manitoba Institute of Child Health, Winnipeg, Manitoba R3E 0W4, and ;the National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
Abstract:In humans, the 25 bitter taste receptors (T2Rs) are activated by hundreds of structurally diverse bitter compounds. However, only five antagonists or bitter blockers are known. In this study, using molecular modeling guided site-directed mutagenesis, we elucidated the ligand-binding pocket of T2R4. We found seven amino acids located in the extracellular side of transmembrane 3 (TM3), TM4, extracellular loop 2 (ECL2), and ECL3 to be involved in T2R4 binding to its agonist quinine. ECL2 residues Asn-173 and Thr-174 are essential for quinine binding. Guided by a molecular model of T2R4, a number of amino acid derivatives were screened for their ability to bind to T2R4. These predictions were tested by calcium imaging assays that led to identification of γ-aminobutryic acid (GABA) and Nα,Nα-bis(carboxymethyl)-l-lysine (BCML) as competitive inhibitors of quinine-activated T2R4 with an IC50 of 3.2 ± 0.3 μm and 59 ± 18 nm, respectively. Interestingly, pharmacological characterization using a constitutively active mutant of T2R4 reveals that GABA acts as an antagonist, whereas BCML acts as an inverse agonist on T2R4. Site-directed mutagenesis confirms that the two novel bitter blockers share the same orthosteric site as the agonist quinine. The signature residues Ala-90 and Lys-270 play important roles in interacting with BCML and GABA, respectively. This is the first report to characterize a T2R endogenous antagonist and an inverse agonist. The novel bitter blockers will facilitate physiological studies focused on understanding the roles of T2Rs in extraoral tissues.
Keywords:Calcium Imaging   G Protein-coupled Receptor (GPCR)   Molecular Modeling   Receptor Structure-Function   Site-directed Mutagenesis   Bitter Taste Receptors   Bitter Blockers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号