首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase
Authors:Natalia Skoczeń  Alain Dautant  Krystyna Binko  François Godard  Marine Bouhier  Xin Su  Jean-Paul Lasserre  Marie-France Giraud  Déborah Tribouillard-Tanvier  Huimei Chen  Jean-Paul di Rago  Roza Kucharczyk
Institution:1. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland;2. CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France;3. Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France;4. Nanjing University School of Medicine, Nanjing, Jiangsu, China;5. Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
Abstract:The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20–30?Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.
Keywords:ATP synthase  mtDNA  Oxidative phosphorylation  Metabolic disease
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号