首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel engineered interchain disulfide bond in the constant region enhances the thermostability of adalimumab Fab
Authors:Hitomi Nakamura  Naoko Oda-Ueda  Tadashi Ueda  Takatoshi Ohkuri
Institution:1. Faculty of Pharmaceutical Sciences, Sojo University, Japan;2. Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
Abstract:We constructed a system for expressing the Fab of the therapeutic human monoclonal antibody adalimumab at a yield of 20 mg/L in the methylotrophic yeast Pichia pastoris. To examine the contribution of interchain disulfide bonds to conformational stability, we prepared adalimumab Fab from which the interchain disulfide bond at the C-terminal region at both the CH1 and CL domains was deleted by substitution of Cys with Ala (FabΔSS). DSC measurements showed that the Tm values of FabΔSS were approximately 5 °C lower than those of wild-type Fab, suggesting that the interchain disulfide bond contributes to conformational thermostability. Using computer simulations, we designed a novel interchain disulfide bond outside the C-terminal region to increase the stability of FabΔSS. The resulting Fab (mutSS FabΔSS) had the mutations H:V177C and L:Q160C in FabΔSS, confirming the formation of the disulfide bond between CH1 and CL. The thermostability of mutSS FabΔSS was approximately 5 °C higher than that of FabΔSS. Therefore, the introduction of the designed interchain disulfide bond enhanced the thermostability of FabΔSS and mitigated the destabilization caused by partial reduction of the interchain disulfide bond at the C-terminal region, which occurs in site-specific modification such as PEGylation.
Keywords:Adalimumab  Antibody  Disulfide bond  Fab  Thermal stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号