首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional interaction of low-homology FRPs from different cyanobacteria with Synechocystis OCP
Authors:Yury B Slonimskiy  Eugene G Maksimov  Evgeny P Lukashev  Marcus Moldenhauer  Cy M Jeffries  Dmitri I Svergun  Thomas Friedrich  Nikolai N Sluchanko
Institution:1. A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation;2. M.V. Lomonosov Moscow State University, Department of Biochemistry, Faculty of Biology, 119991 Moscow, Russian Federation;3. M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991 Moscow, Russian Federation;4. Technical University of Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany;5. European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
Abstract:Photosynthesis requires a balance between efficient light harvesting and protection against photodamage. The cyanobacterial photoprotection system uniquely relies on the functioning of the photoactive orange carotenoid protein (OCP) that under intense illumination provides fluorescence quenching of the light-harvesting antenna complexes, phycobilisomes. The recently identified fluorescence recovery protein (FRP) binds to the photoactivated OCP and accelerates its relaxation into the basal form, completing the regulatory circle. The molecular mechanism of FRP functioning is largely controversial. Moreover, since the available knowledge has mainly been gained from studying Synechocystis proteins, the cross-species conservation of the FRP mechanism remains unexplored. Besides phylogenetic analysis, we performed a detailed structural-functional analysis of two selected low-homology FRPs by comparing them with Synechocystis FRP (SynFRP). While adopting similar dimeric conformations in solution and preserving binding preferences of SynFRP towards various OCP variants, the low-homology FRPs demonstrated distinct binding stoichiometries and differentially accentuated features of this functional interaction. By providing clues to understand the FRP mechanism universally, our results also establish foundations for upcoming structural investigations necessary to elucidate the FRP-dependent regulatory mechanism.
Keywords:OCP  orange carotenoid protein  holoprotein  AA  OCP with amino acid substitutions Y201A and W288A  holoprotein  NTE  N-terminal extension (comprising the αA helix up to amino acid 20)  ΔNTE  OCP with the 12 most N-terminal amino acids deleted  holoprotein  CTD  C-terminal domain  NTD  N-terminal domain  HCP  helical carotenoid protein  NTD homologue of OCP  COCP  RCP  red carotenoid protein  holoprotein  RCP(apo)  FRP  fluorescence recovery protein  SynFRP  AnaFRP  AmaxFRP  CAN  canthaxanthin  ECN  echinenone  hECN  3′-hydroxyechinenone  AL  actinic light  LED  light-emitting diode  DLS  dynamic light scattering  DTT  dithiothreitol  PB  phycobilisome  QELS  quasi-elastic light scattering  RC  reaction center of photosystem  ROS  reactive oxygen species  SEC  size-exclusion chromatography  SEC-MALLS  SEC with multiangle laser light scattering analysis  SAXS  small-angle X-ray scattering  SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis  MSA  multiple sequence alignment  UV  ultraviolet  Orange carotenoid protein  Fluorescence recovery protein  Homologues  Phycobilisome fluorescence  Protein-protein interactions  Photoprotection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号