首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Signaling complexes of voltage-gated calcium channels and G protein-coupled receptors
Authors:Altier Christophe  Zamponi Gerald W
Institution:Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Canada.
Abstract:Activation of opioid or opioid-receptor-like (ORL1 a.k.a. NOP or orphanin FQ) receptors mediates analgesia through inhibition of N-type calcium channels in dorsal root ganglion (DRG) neurons (1, 2). Unlike the three types of classical mu, delta, and kappa opioid receptors, ORL1 mediates an agonist-independent inhibition of N-type calcium channels. This is mediated via the formation of a physical protein complex between the receptor and the channel, which in turn allows the channel to effectively sense a low level of constitutive receptor activity (3). Further inhibition of N-type channel activity by activation of other G protein-coupled receptors is thus precluded. ORL1 receptors, however, also undergo agonist-induced internalization into lysosomes, and channels thereby become cointernalized in a complex with ORL1. This then results in removal of N-type channels from the plasma membrane and reduced calcium entry (4). Similar signaling complexes between N-type channels and GABA(B) receptors have been reported (5). Moreover, both L-type and P/Q-type channels appear to be able to associate with certain types of G protein-coupled receptors (6, 7). Hence, interactions between receptors and voltage-gated calcium channels may be a widely applicable means to optimize receptor channel coupling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号