首页 | 本学科首页   官方微博 | 高级检索  
     


Reductive half-reaction in medium-chain acyl-CoA dehydrogenase: modulation of internal equilibrium by carboxymethylation of a specific methionine residue.
Authors:J G Cummings  S M Lau  P J Powell  C Thorpe
Affiliation:Department of Chemistry and Biochemistry, University of Delaware, Newark 19716.
Abstract:Pig kidney medium-chain acyl-CoA dehydrogenase is specifically alkylated at a methionine residue by treatment with iodoacetate at pH 6.6. This residue corresponds to Met249 in the human medium-chain acyl-CoA dehydrogenase sequence [Kelly, D. P., Kim, J. J., Billadello, J. J., Hainline, B. E., Chu, T. W., & Strauss, A. W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4068-4072]. The S-carboxymethylated dehydrogenase shows a drastically lowered affinity for octanoyl-CoA (from submicromolar to 65 microM), but retains about 23% of the maximal activity of the native enzyme. In addition, alkylation perturbs the internal redox equilibrium: E.FADox.octanoyl-CoA K2 in equilibrium with E.FAD2e.octenoyl-CoA K2 ranges from about 9 for the native enzyme to about 0.2 for the homogeneously modified protein. This effect is not due to a significant change in the redox potential of the free enzyme upon alkylation. Rather, carboxymethylation weakens the preferential binding of enoyl-CoA product to the reduced enzyme (K3) compared to octanoyl-CoA binding to the oxidized dehydrogenase (K1) that is required to pull the substrate thermodynamically uphill. Thus, the ratio of dissociation constants, K1/K3, decreases from about 15,000 for the native enzyme to only 330 upon carboxymethylation of Met249. Binding studies with a variety of acyl-CoA analogues and manipulation of enzyme redox potentials by substitution of the natural prosthetic group by 8-Cl-FAD confirm the thermodynamic effects of alkylation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号