首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM
Authors:Fletcher Ryan J  Shen Jingping  Gómez-Llorente Yacob  Martín Carmen San  Carazo José M  Chen Xiaojiang S
Institution:Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.
Abstract:Methanobacterium thermoautotrophicum MCM (mtMCM) is a helicase required for DNA replication. Previous electron microscopy studies have shown mtMCM in several oligomeric forms. However, biochemical studies suggest that mtMCM is a dodecamer, likely a double hexamer (dHex). The crystal structure of the N-terminal fragment of mtMCM reveals a stable dHex architecture. To further confirm that the dHex is not an artifact of crystal packing of two hexamers, we investigated the relevance of the dHex by disrupting the hexamer-hexamer interactions seen in the crystal structure via site-directed mutagenesis and examining various biochemical activities of the mutants in vitro. Using a combination of biochemical and structural assays, we demonstrated that changing arginine to alanine at amino acid position 161 or the insertion of a six-aminoacid peptide at the hexamer-hexamer interface disrupted dHex formation and produced stable single hexamers (sHex). Furthermore, we showed that the sHex mutants retained wild-type level of ATPase and DNA binding activities but had decreased helicase activity when compared with the wild type dHex protein. These biochemical properties of mtMCM are reminiscent of those of SV40 large T antigen, suggesting that the dHex form of mtMCM may be the active helicase for DNA unwinding during the bidirectional DNA replication.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号