首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidative stress-induced posttranslational modifications of human hemoglobin in erythrocytes
Authors:Wei Xiang  Volker Weisbach  Heinrich Sticht  Angela Seebahn  Julia Bussmann  Robert Zimmermann  Cord-Michael Becker
Affiliation:1. State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;2. College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan 430072, China
Abstract:Posttranslational modifications (PTMs) have been reported in hemoglobin (Hb) treated with ROS/RNS in cell-free experiments. However, little is known about oxidative PTMs of Hb occurring within the erythrocytes. The aim of this study is to characterize the patterns of Hb PTMs in erythrocytes under oxidative stress. Using mass spectrometry, we investigated specifically methionine/tryptophan oxidation, tyrosine nitration, and the modification via 4-hydroxynonenal (HNE), a product of lipid-peroxidation, on Hb. We demonstrated that the treatment with H2O2/nitrite induced higher levels of Hb oxidation/nitration in purified Hb preparations than in unpurified hemolysates and erythrocytes, indicating that ROS/RNS are primarily removed by antioxidative mechanisms. We further studied Hb from erythrocytes exposed to γ-irradiation. An irradiation of 30–100 Gy triggered a remarkable increase of intracellular ROS. However, 30 Gy did not induce apparent changes in Hb oxidation/nitration and hemolysis, while Hb oxidation/nitration and hemolysis were significantly enhanced by 100 Gy, suggesting that Hb oxidation/nitration are the consequence of overwhelmed antioxidative mechanisms after oxidative attack and reflect the severity of the oxidative damage of erythrocytes. Although irradiation was known to induce lipid-peroxidation, we could not detect HNE-Hb adducts in irradiated erythrocytes. Analyzing PTM patterns suggests Hb nitration as a more suitable indicator of the oxidative damage of erythrocytes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号