首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure of a Ca2 +/CaM:Kv7.4 (KCNQ4) B-Helix Complex Provides Insight into M Current Modulation
Authors:Qiang Xu  Aram Chang  Alexandra Tolia  Daniel L Minor
Institution:1. Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2156, USA;2. Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2156, USA;3. California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158-2156, USA;4. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Abstract:Calmodulin (CaM) is an important regulator of Kv7.x (KCNQx) voltage-gated potassium channels. Channels from this family produce neuronal M currents and cardiac and auditory IKS currents and harbor mutations that cause arrhythmias, epilepsy, and deafness. Despite extensive functional characterization, biochemical and structural details of the interaction between CaM and the channel have remained elusive. Here, we show that both apo-CaM and Ca2 +/CaM bind to the C-terminal tail of the neuronal channel Kv7.4 (KCNQ4), which is involved in both hearing and mechanosensation. Interactions between apo-CaM and the Kv7.4 tail involve two C-terminal tail segments, known as the A and B segments, whereas the interaction between Ca2 +/CaM and the Kv7.4 C-terminal tail requires only the B segment. Biochemical studies show that the calcium dependence of the CaM:B segment interaction is conserved in all Kv7 subtypes. X-ray crystallographic determination of the structure of the Ca2 +/CaM:Kv7.4 B segment complex shows that Ca2 +/CaM wraps around the Kv7.4 B segment, which forms an α-helix, in an antiparallel orientation that embodies a variation of the classic 1-14 Ca2 +/CaM interaction motif. Taken together with the context of prior studies, our data suggest a model for modulation of neuronal Kv7 channels involving a calcium-dependent conformational switch from an apo-CaM form that bridges the A and B segments to a Ca2 +/CaM form bound to the B-helix. The structure presented here also provides a context for a number of disease-causing mutations and for further dissection of the mechanisms by which CaM controls Kv7 function.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号