首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glycosylation of skeletal calsequestrin: implications for its function
Authors:Sanchez Emiliano J  Lewis Kevin M  Munske Gerhard R  Nissen Mark S  Kang ChulHee
Institution:School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA.
Abstract:Calsequestrin (CASQ) serves as a major Ca(2+) storage/buffer protein in the sarcoplasmic reticulum (SR). When purified from skeletal muscle, CASQ1 is obtained in its glycosylated form. Here, we have confirmed the specific site and degree of glycosylation of native rabbit CASQ1 and have investigated its effect on critical properties of CASQ by comparison with the non-glycosylated recombinant form. Based on our comparative approach utilizing crystal structures, Ca(2+) binding capacities, analytical ultracentrifugation, and light-scattering profiles of the native and recombinant rabbit CASQ1, we propose a novel and dynamic role for glycosylation in CASQ. CASQ undergoes a unique degree of mannose trimming as it is trafficked from the proximal endoplasmic reticulum to the SR. The major glycoform of CASQ (GlcNAc(2)Man(9)) found in the proximal endoplasmic reticulum can severely hinder formation of the back-to-back interface, potentially preventing premature Ca(2+)-dependent polymerization of CASQ and ensuring its continuous mobility to the SR. Only trimmed glycans can stabilize both front-to-front and the back-to-back interfaces of CASQ through extensive hydrogen bonding and electrostatic interactions. Therefore, the mature glycoform of CASQ (GlcNAc(2)Man(1-4)) within the SR can be retained upon establishing a functional high capacity Ca(2+) binding polymer. In addition, based on the high resolution structures, we propose a molecular mechanism for the catecholaminergic polymorphic ventricular tachycardia (CPVT2) mutation, K206N.
Keywords:Calcium  Crystal Structure  Glycosylation  Post-translational Modification  Sarcoplasmic Reticulum (SR)  Skeletal Muscle  Calsequestrin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号