首页 | 本学科首页   官方微博 | 高级检索  
     


Ubiquitination-mediated regulation of biosynthesis of the adhesion receptor SHPS-1 in response to endoplasmic reticulum stress
Authors:Murai-Takebe Reiko  Noguchi Tetsuya  Ogura Takeshi  Mikami Toshiyuki  Yanagi Kazunori  Inagaki Kenjiro  Ohnishi Hiroshi  Matozaki Takashi  Kasuga Masato
Affiliation:Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
Abstract:Misfolding of proteins during endoplasmic reticulum (ER) stress results in the formation of cytotoxic aggregates. The ER-associated degradation pathway counteracts such aggregation through the elimination of misfolded proteins by the ubiquitin-proteasome system. We now show that SHP substrate-1 (SHPS-1), a transmembrane glycoprotein that regulates cytoskeletal reorganization and cell-cell communication, is a physiological substrate for the Skp1-Cullin1-NFB42-Rbx1 (SCF(NFB42)) E3 ubiquitin ligase, a proposed mediator of ER-associated degradation. SCF(NFB42) mediated the polyubiquitination of immature SHPS-1 and its degradation by the proteasome. Ectopic expression of NFB42 both suppressed the formation of aggresome-like structures and the phosphorylation of the translational regulator eIF2alpha induced by overproduction of SHPS-1 as well as increased the amount of mature SHPS-1 at the cell surface. An NFB42 mutant lacking the F box domain had no such effects. Our results suggest that SCF(NFB42) regulates SHPS-1 biosynthesis in response to ER stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号