首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Length variation and secondary structure of introns in the Mlc1 gene in six species of Drosophila
Authors:Clark  AG; Leicht  BG; Muse  SV
Institution:Department of Biology, Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park 16802, USA. c92@psuvm.psu.edu
Abstract:A nearly universal feature of intron sequences is that even closely related species exhibit a large number of insertion/deletion differences. The goal of the analysis described here is to test whether the observed pattern of insertion/deletion events in the genealogy of the myosin alkali light chain (Mlc1) gene is consistent with neutrality, and if not, to determine the underlying forces of evolutionary change. Mlc1 pre-mRNA is alternatively spliced, and one constraint is that signals necessary for tissue-specificity of directed splicing must be conserved. If the total length of an intron is functionally constrained, then the distribution of indels on branches of the gene genealogy should reflect a departure from randomness. Here we perform a phylogenetic analysis, inferring ancestral states wherever possible on a phylogeny of 29 alleles of Mlc1 from six species of Drosophila. Observed patterns of indels on the genealogy were compared to those from simulated data, with the result that we cannot reject the null hypothesis of neutrality. A clear departure from a neutral prediction was seen in the excess folding free energy predicted for the introns flanking the alternatively spliced exon. Relative rate tests also suggest a retardation in the rate of Mlc1 sequence evolution in the simulans clade.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号