首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone
Institution:1. College of Life Science, Sichuan Normal University, Chengdu 610066, China;2. Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua 617061, China;3. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
Abstract:Relatively few studies have compared invasibility and species invasiveness among microhabitats within communities, synchronously. We surveyed the abundance and performance of non-native Alternanthera philoxeroides (Mart.) Griseb. (alligator weed), its co-occurring native congener, Alternanthera sessilis (L.) DC. (sessile joyweed), and other species in a wetland community along a riparian zone in southeast China to test the hypotheses that: i) degree of invasion differs between different types of microhabitats within the community; and ii) microhabitat types that differ in invasibility also differ in soil resource availability or in sediment characteristics likely to affect resource availability; iii) phenotypic plasticity of A. philoxeroides may play a key role in its adaptation to diverse habitats as can be concluded from its extremely low genetic diversity in China. The study riparian zone comprises different types of microhabitats including wet abandoned field, swamp, marsh dunes and gravel dunes. Consistent with these hypotheses, cover of A. philoxeroides was high in abandoned fields (73 ± 2.9%) and swamps (94 ± 1.3%), which had high soil nutrients and water availability. On the contrary, cover of native A. sessilis was relatively high in marsh dunes and grave dunes, which had coarse gravel surfaces, low soil nutrients and low water availability. A. philoxeroides showed greater morphological plasticity in response to habitat variation. In abiotically harsh habitats, stems had limited growth, and were prostrate with weak adventitious roots at nodes, forming thin, scattered patches. In the two richer habitats, the highly branched plants spread over the water or soil surface, supporting dense stronger leaf-bearing stems which grew vertically. The growth pattern of A. sessilis among microhabitats did not exhibit significant variations. These results suggest that morphological plasticity and microhabitat types with high soil resources may facilitate invasions of A. philoxeroides.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号