首页 | 本学科首页   官方微博 | 高级检索  
     


Implications of spin dynamics for the charge recombination in iron-depleted and quinone-substituted reaction centers from Rhodobacter sphaeroides R-26
Affiliation:Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
Abstract:Detailed calculations on the spin-dependent recombination dynamics are presented for reaction centers of Rhodobacter sphaeroides R-26 in which electron transfer from the primary radical pair to the iron-quinone acceptor complex has been slowed down by either iron depletion or replacement of the native ubiquinone by other quinones with different midpoint potential. Recombination yields reported for iron-depleted samples (Kirmaier, C., Holten, D., Debus, R.J., Feher, G. and Okamura, M.Y. (1986) Proc. Natl. Acad. Sci. USA 83, in the press) are compared to those in quinone-depleted reaction centers, where the forward electron transfer is completely blocked by extraction of the quinone. Within the scatter of the experimental data, the recombination pattern appears to be similar in the two different preparations indicating that the structural and kinetic features of the recombining radical pair state are not seriously affected by removal of the iron.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号