首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae)
Authors:Mao Chen  Jian-zhou Zhao  Anthony M. Shelton  Jun Cao  Elizabeth D. Earle
Affiliation:Department of Entomology, NYSAES, Cornell University, Geneva, NY 14456, USA.
Abstract:Transgenic brassica crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are being investigated as candidates for field release to control lepidopteran pests. Information on the potential impact of Bt brassica crops on pests and non-target natural enemies is needed as part of an environmental risk assessment prior to the commercial release. This first tier study provides insight into the tritrophic interactions among Bt broccoli plants, the herbivore Pieris rapae and its parasitoid Pteromalus puparum. We first evaluated the efficacy of three types of Bt broccoli plants, cry1Ac, cry1C and cry1Ac + cry1C, on different instars of P. rapae. Bt broccoli effectively controlled P. rapae larvae, although later instars were more tolerant. The efficacy of different Bt broccoli plants on P. rapae larvae was consistently cry1Ac > cry1Ac + cry1C > cry1C. When the parasitoid P. puparum developed in a P. rapae pupa (host) that had developed from Bt plant-fed older larvae, developmental time, total number and longevity of the P. puparum generated from the Bt plant-fed host were significantly affected compared with those generated from the non-Bt control plant-fed host. Simultaneously, negative effects on P. rapae pupae were found, i.e. pupal length, width and weight were significantly reduced after older P. rapae larvae fed on different Bt plants for 1 or 2 days. Cry1C toxin was detected using ELISA in P. rapae pupae after older larvae fed on cry1C broccoli. However, no Cry1C toxin was detected in newly emerged P. puparum adults developing in Bt-fed hosts. Only a trace amount of toxin was detected from entire P. puparum pupae dissected from the Bt plant-fed host. Moreover, no negative effect was found on the progeny of P. puparum developing from the Bt plant-fed host when subsequently supplied with a healthy host, P. rapae pupae. The reduced quality of the host appears to be the only reason for the observed deleterious effects on P. puparum. Our data suggest that the effects on P. puparum developing in Bt plant-fed P. rapae are mediated by host quality rather than by direct toxicity.
Keywords:Bacillus thuringiensis    Pieris rapae    Pteromalus puparum   Transgenic broccoli  Tritrophic interactions
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号