首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Localization of functional endothelin receptor signaling complexes in cardiac transverse tubules
Authors:Robu Valentin G  Pfeiffer Emily S  Robia Seth L  Balijepalli Ravi C  Pi YeQing  Kamp Timothy J  Walker Jeffery W
Institution:Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA.
Abstract:Endothelin-1 (ET-1) is an autocrine factor in the mammalian heart important in enhancing cardiac performance, protecting against myocardial ischemia, and initiating the development of cardiac hypertrophy. The ETA receptor is a seven-transmembrane G-protein-coupled receptor whose precise subcellular localization in cardiac muscle is unknown. Here we used fluorescein ET-1 and 125I-ET-1 to provide evidence for ET-1 receptors in cardiac transverse tubules (T-tubules). Moreover, the ETA receptor and downstream effector phospholipase C-beta 1 were co-localized within T-tubules using standard immunofluorescence techniques, and protein kinase C (PKC)-epsilon-enhanced green fluorescent protein bound reversibly to T-tubules upon activation. Localized photorelease of diacylglycerol further suggested compartmentation of PKC signaling, with release at the myocyte "surface" mimicking the negative inotropic effects of bath-applied PKC activators and "deep" release mimicking the positive inotropic effect of ET-1. The functional significance of T-tubular ET-1 receptors was further tested by rendering the T-tubule lumen inaccessible to bath-applied ET-1. Such "detubulated" cardiac myocytes showed no positive inotropic response to 20 nM ET-1, despite retaining both a nearly normal twitch response to field stimulation and a robust positive inotropic response to 20 nm isoproterenol. We propose that ET-1 enhances myocyte contractility by activating ETA receptor-phospholipase C-beta 1-PKC-epsilon signaling complexes preferentially localized in cardiac T-tubules. Compartmentation of ET-1 signaling complexes may explain the discordant effects of ET-1 versus bath applied PKC activators and may contribute to both the specificity and diversity of the cardiac actions of ET-1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号