首页 | 本学科首页   官方微博 | 高级检索  
     


ULTRASTRUCTURE OF THE LAMELLAE AND GRANA IN THE CHLOROPLASTS OF ZEA MAYS L
Authors:A. J. Hodge   J. D. McLean     F. V. Mercer
Affiliation:(From the Chemical Physics Section, Division of Industrial Chemistry, Commonwealth Scientific and Industrial Research Organization, Melbourne, and the Botany Department, University of Sydney, Sydney, Australia)
Abstract:The fine structure of the chloroplasts of maize (Zea mays L.) has been investigated by electron microscopic examination of ultrathin sections of leaves fixed in buffered osmium tetroxide solutions. Both the parenchyma sheath and mesophyll chloroplasts contain a system of densely staining lamellae about 125 A thick immersed in a finely granular matrix material (the stroma), and are bounded by a thin limiting membrane which often appears as a double structure. In the parenchyma sheath chloroplasts, the lamellae usually extend the full width of the disc-shaped plastids, and grana are absent. The mesophyll chloroplasts, however, contain numerous grana of a fairly regular cylindrical form. These consist of highly ordered stacks of dense lamellae, the interlamellar spacing being ca. 125 A. The grana are interlinked by a system of lamellae (intergrana lamellae) which are on the average about one-half as numerous as the lamellae within the grana. In general, this appears to be due to a bifurcation of the lamellae at the periphery of the granum, but more complex interrelationships have been observed. The lamellae of the parenchyma sheath chloroplasts and those of both the grana and intergrana regions of the mesophyll chloroplasts exhibit a compound structure when oriented normally to the plane of the section. A central exceptionally dense line (ca. 35 A thick) designated the P zone is interposed between two less dense layers (the L zones, ca. 45 A thick), the outer borders of which are defined by thin dense lines (the C zones). Within the grana, the C zones, by virtue of their close apposition, give rise to thin dense intermediate lines (I zones) situated midway between adjacent P zones. A model of the lamellar structure is proposed in which mixed lipide layers (L zones) are linked to a protein layer (P zone) by non-polar interaction. Chlorophyll is distributed over the entire lamellar surface and held in the structure by van der Waals interaction of the phytol "tail" with the hydrocarbon moieties of the mixed lipide layers. The evidence in favour of the model is briefly discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号