首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Changes in canine latissimus dorsi muscle during 24 wk of continuous electrical stimulation.
Authors:C M Lucas  M G Havenith  F H van der Veen  J Habets  T van der Nagel  J M Schrijvers-Van Schendel  O C Penn  H J Wellens
Institution:Department of Cardiology, Academic Hospital Maastricht, University of Limburg, The Netherlands.
Abstract:To study functional, structural, and biochemical adaptations to electrical stimulation of striated muscle in a large animal, the canine latissimus dorsi (LD) muscle was conditioned continuously for 24 wk with an increasing number of pulse bursts (burst duration 250 ms, burst frequency 30 Hz). Force measurements in vivo after 12 wk showed a significant decrease in the ripple, the ratio of interstimulus to peak force amplitude, from 0.94 +/- 0.03 to 0.13 +/- 0.08 (SE; n = 8, P less than 0.05), indicating reduction in contractile speed. Also the steep part of the force-frequency relation shifted to lower frequencies. A significant change in fiber-type composition was seen with both enzyme- and immunohistochemistry, manifested by an increase of type I fibers from 29.5 +/- 2.9 to 83 +/- 8% (SE; n = 8, P less than 0.05). During this period a transient rise in the number of type IIc/Ic fibers (from 3 to 10%) was seen. In the stimulated muscle, capillary-to-fiber ratio increased from 1.9 +/- 0.4 to 2.7 +/- 0.1 (P less than 0.05). A significant increase in mitochondrial volume was also seen, especially in the peripheral part of the fiber. Both creatine kinase and lactate dehydrogenase revealed a significant decline in activity within 12 wk. At the same time a shift in lactate dehydrogenase-isozyme pattern was observed toward the cardiac composition. No additional changes occurred after 12 wk of stimulation, indicating that conversion of the canine LD muscle was complete within this period.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号