Abstract: | CO2 fixation by particle-free extracts from Nitrobacter winogradskyi increased by addition of reduced nicotinamide adenine dinucleotide (NADH). Ribulose-1,5-diphosphate, however, increased CO2 fixation, even in the absence of NADH. Phosphoribulokinase (EC 2.7.1.19) was the enzyme of Nitrobacter extracts that was activated specifically by NADH. Pyridoxal-5-phosphate inhibited both CO2 fixation and NADH-activated phosphoribulokinase from Nitrobacter. However, it did not affect phosphoribulokinase from spinach leaves. Since the spinach enzyme had also no requirement for reduced pyridine nucleotides, it appears that pyridoxal phosphate interferes only with the binding of NADH and not with the binding of ribulose-5-phosphate and adenosine-5'-triphosphate. The regulation of phosphoribulokinase activity by NADH provided Nitrobacter with an energy-dependent control mechanism of CO2 assimilation. |