首页 | 本学科首页   官方微博 | 高级检索  
     


Active-site modification of mammalian DNA polymerase beta with pyridoxal 5'-phosphate: mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket
Authors:A Basu  P Kedar  S H Wilson  M J Modak
Affiliation:Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry, New Jersey Medical School, Newark 07103.
Abstract:Pyridoxal 5'-phosphate is a potent inhibitor of the DNA polymerase activity of recombinant rat DNA polymerase beta. Kinetic studies indicate that the mechanism of PLP inhibition is complex. In a lower range of PLP concentration, inhibition is competitive with respect to substrate dNTP, whereas at higher levels of PLP several forms of enzyme combine with PLP and are involved in the overall inhibition, and a possible model for these interactions during the catalytic process is suggested. Reduction of the PLP-treated enzyme with sodium [3H]borohydride results in covalent incorporation of about 4 mol of PLP/mol of enzyme, and the modified enzyme is not capable of DNA polymerase activity. The presence of dNTP during the modification reaction blocks incorporation of 1 mol of PLP/mol of enzyme, and the enzyme so modified is almost fully active. This protective effect is not observed in the absence of template-primer. Tryptic peptide mapping of the PLP-modified enzyme reveals four major sites of modification. Of these four sites, only one is protected by dNTP from pyridoxylation. Sequence analysis of the tryptic peptide corresponding to the protected site reveals that it spans residues 68-80 in the amino acid sequence of the enzyme, with Lys 71 as the site of pyridoxylation. These results indicate that Lys 71 is at or near the binding pocket for the dNTP substrate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号