首页 | 本学科首页   官方微博 | 高级检索  
     


Strong light elevates thermotolerance of photosynthetic apparatus and the content of membranes and polar lipids in wheat leaves
Authors:I. M. Kislyuk  L. S. Bubolo  O. D. Bykov  I. E. Kamentseva  E. R. Kotlova  M. A. Vinogradskaya
Affiliation:1. Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, St. Petersburg, 197376, Russia
Abstract:The influence of excess irradiance on resistance of wheat (Triticum aestivum L.) photosynthetic apparatus to heating in darkness and in the light was investigated and compared with changes in leaf cell ultra-structure and composition of cell lipids and fatty acids. The leaves of 14- to 16-day-old plants grown at low irradiance (about 20 W/m2) were exposed for 1 h to irradiance of 370 or 600 W/m2 PAR. Using infrared gas analysis, we found that the preexposure of leaves to excess irradiation elevated resistance of apparent photosynthesis to 10-min heat treatment at 40–45°C. The rate of Hill reaction (reduction of 2,6-dichlorophenolindophenol by isolated chloroplasts) was higher for leaves heated at high irradiance than for leaves heated in darkness. During illumination of leaves with strong light, mesophyll cells became more abundant in mitochondria and peroxysomes, as well as in cisternae of endoplasmic reticulum and Golgi complex. The chloroplast thylakoids and grana became more extensive and numerous. At the same time, the leaf content of main classes of membrane glycerolipids increased in parallel with the increase in the phospholipid/glycolipid and lipid/chlorophyll ratios. The unsaturation index of fatty acids of membrane lipids increased because of the elevated content of linolenic acid. Thus, excessive light (not fully utilized in photosynthesis) induced in wheat leaves a series of nonspecific adaptive changes that were similar to those occurring under the action of other environmental factors, such as heat shock, cooling, salinity, and osmotic stresses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号