首页 | 本学科首页   官方微博 | 高级检索  
     


Hormonal regulation of ENaCs: insulin and aldosterone
Authors:Blazer-Yost, Bonnie L.   Liu, Xuehong   Helman, Sandy I.
Abstract:Although a variety of hormones and other agents modulate renalNa+ transport acting by way of theepithelial Na+ channel (ENaC), themode(s), pathways, and their interrelationships in regulation of thechannel remain largely unknown. It is likely that several hormones maybe present concurrently in vivo, and it is, therefore, important tounderstand potential interactions among the various regulatory factorsas they interact with the Na+transport pathway to effect modulation ofNa+ reabsorption in distal tubulesand other native tissues. This study represents specifically adetermination of the interaction between two hormones, namely,aldosterone and insulin, which stimulate Na+ transport by entirelydifferent mechanisms. We have used a noninvasive pulse protocol ofblocker-induced noise analysis to determine changes in single-channelcurrent (iNa),channel open probability (Po), andfunctional channel density(NT) ofamiloride-sensitive ENaCs at various time points following treatmentwith insulin for 3 h of unstimulated control and aldosterone-pretreatedA6 epithelia. Independent of threefold differences of baseline values of transport caused by aldosterone, 20 nM insulin increased by threefold and within 10-30 min the density of the pool of apical membrane ENaCs(NT) involvedin transport. The very early (10 min) increases of channel density wereaccompanied by relatively small decreases ofiNa(10-20%) and decreases ofPo (28%) in the aldosterone-pretreated tissues but not the control unstimulated tissues. The early changes ofiNa,Po, andNT weretransient, returning very slowly over 3 h toward their respectivecontrol values at the time of addition of insulin. We conclude thataldosterone and insulin act independently to stimulate apicalNa+ entry into the cells of A6epithelia by increase of channel density.

Keywords:
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号