首页 | 本学科首页   官方微博 | 高级检索  
   检索      


From nuclear genes to chloroplast localized proteins
Institution:1. School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;2. School of Life Sciences, Yantai University, Yantai 264005, China;3. School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;4. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;1. INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France;2. AgroParisTech, UMR Micalis, Jouy-en-Josas, France;3. Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Che?mońskiego 37/41, 51-630 Wroclaw, Poland
Abstract:There is broad evidence that an endosymbiotic uptake of a cyanobacterial-type organism was the point of origin for the evolution of chloroplasts. During organelle evolution extensive gene transfer from the symbiont to the host genome occurred, which raises the question of how these gene products, namely proteins, which are still functional in chloroplasts, find their way back ‘home’. Nuclear-encoded proteins enter plastids via a complex import machinery that requires the coordinate interplay of a variety of soluble and membrane-bound factors on the cytosolic site as well as on the stromal side of the chloroplast envelope membranes. We define that the process called ‘import of chloroplast precursor proteins’ begins with the release of the polypeptide from the ribosomes and binding to cytosolic factors, such as a guidance complex, which accompanies (chaperones) proteins to chloroplasts. The translocation across the envelope membranes engages distinct translocation machineries at the outer and the inner envelope membranes. Additionally subsequent sorting events to different subcompartments within the plastids are operated by a number of distinct pathways, all of which seem to involve multiple subunits, which are largely of bacterial (symbiotic) origin. The evolutionary history of proteins mediating the import of chloroplast constituents across the envelope membranes seems more diverse. Since cyanobacteria lack a protein import pathway, it is not surprising that only a few subunits of the chloroplast translocon seem to be of symbiotic origin while others seem to be eukaryotic additions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号