首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of B-Cell Epitopes on Virus-Like Particles of Cutaneous Alpha-Human Papillomaviruses
Authors:Tilo Senger  Maria R Becker  Lysann Sch?dlich  Tim Waterboer  Lutz Gissmann
Institution:Department of Genome Modifications and Carcinogenesis, German Cancer Research Center, D-69120 Heidelberg, Germany,1. Department of Dermatology, University Hospital, D-69120 Heidelberg, Germany,2. Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia3.
Abstract:Human papillomavirus (PV) (HPV) types 2, 27, and 57 are closely related and, hence, represent a promising model system to study the correlation of phylogenetic relationship and immunological distinctiveness of PVs. These HPV types cause a large fraction of cutaneous warts occurring in immunocompromised patients. Therefore, they constitute a target for the development of virus-like particle (VLP)-based vaccines. However, the immunogenic structure of HPV type 2, 27, and 57 capsids has not been studied yet. Here we provide, for the first time, a characterization of the B-cell epitopes on VLPs of cutaneous alpha-HPVs using a panel of 94 monoclonal antibodies (MAbs) generated upon immunization with capsids from HPV types 2, 27, and 57. The MAbs generated were characterized regarding their reactivities with glutathione S-transferase-L1 fusion proteins from 18 different PV types, the nature of their recognized epitopes, their isotypes, and their ability to neutralize HPV type 2, 27, 57, or 16. In total, 33 of the 94 MAbs (35%) showed type-specific reactivity. All type-specific MAbs recognize linear epitopes, most of which map to the hypervariable surface loop regions of the L1 amino acid sequence. Four of the generated MAbs neutralized pseudovirions of the inoculated HPV type efficiently. All four MAbs recognized epitopes within the BC loop, which is required and sufficient for their neutralizing activity. Our data highlight the immunological distinctiveness of individual HPV types, even in comparison to their closest relatives, and they provide a basis for the development of VLP-based vaccines against cutaneous alpha-HPVs.Recently licensed prophylactic vaccines confer efficient protection against infections by human papillomavirus (PV) (HPV) types 16 and 18, thereby aiming to prevent approximately 70% of all cervical cancer cases (17, 39). These vaccines are composed of virus-like particles (VLPs), which spontaneously assemble from the major capsid protein L1 via 72 pentamers (capsomeres) as subunits (2, 23, 26).In the process of vaccine development, monoclonal antibodies (MAbs) proved to be valuable tools for the immunological analysis of recombinantly produced capsids and capsomeres (51) as well as for serological studies (25, 49, 56). Moreover, the identification and characterization of many neutralizing epitopes of HPV types 11 and 16 have been facilitated by the employment of MAbs (6, 11, 30-32, 41, 42, 55). Such epitopes to neutralizing antibodies are mostly conformation dependent, but a few neutralizing MAbs that recognize linear epitopes have also been generated (16, 18). Most neutralizing MAbs are HPV type specific due to the hypervariable nature of their respective epitopes, which typically reside in the surface-exposed loop regions of the L1 protein (10). In contrast, cross-reactive MAbs targeting rather conserved L1 epitopes are generally nonneutralizing.HPV types 2, 27, and 57 are the three members of Alphapapillomavirus species 4 (20). They are very closely related, and HPV types 2 and 27 hardly fulfill the requirement of more than 10% nucleotide variation in the L1 open reading frame to be classified as distinct types (8). Therefore, they represent a promising model system to study the immunological distinctiveness of closely related HPV types. Pathologically, HPV types 2, 27, and 57 infect primarily the cutaneous epithelia, thereby causing common skin warts, which often occur ubiquitously and confluently in immunocompromised patients (1, 24, 28). It is our long-term goal to develop a prophylactic L1 VLP-based vaccine to alleviate the burden provoked by HPV-induced skin lesions in these patients. However, to date, neither the structure nor the immunogenicity of HPV type 2, 27, and 57 capsids has been elucidated.The purpose of the present study was twofold. First, we sought to generate MAbs specific for HPV types 2, 27, and 57 as tools for type-specific diagnostic assays. Second, we aimed to exploit the generated MAbs for an investigation of the B-cell epitopes on capsids of HPV types 2, 27, and 57.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号