Distribution and Diversity of Archaeal and Bacterial Ammonia Oxidizers in Salt Marsh Sediments |
| |
Authors: | Nicole S. Moin Katelyn A. Nelson Alexander Bush Anne E. Bernhard |
| |
Affiliation: | Department of Biology, Connecticut College, New London, Connecticut |
| |
Abstract: | Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than β-AOB based on quantitative PCR of amoA genes. At some sites, we detected 109 AOA amoA gene copies g of sediment−1. Ratios of AOA to β-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and β-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and β-ΑΟΒ abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA.Nitrification, the sequential oxidation of ammonia to nitrite and nitrate, is a critical step in the nitrogen cycle and is mediated by a suite of phylogenetically and physiologically distinct microorganisms. The recent discovery of ammonia oxidation among Archaea (17, 38) has led to a dramatic shift in the current model of nitrification and to new questions of niche differentiation between putative ammonia-oxidizing Archaea (AOA) and the more-well-studied ammonia-oxidizing Betaproteobacteria (β-AOB). Based on surveys of 16S rRNA genes and archaeal amoA genes, it is evident that AOA occupy a wide range of niches (10), suggesting a physiologically diverse group of Archaea. Additionally, in studies where AOA and β-AOB were both targeted, AOA were typically more abundant than their bacterial counterparts (19, 21, 42). However, there are reports of β-AOB outnumbering AOA in estuarine systems (6, 33), suggesting a possible shift in competitive dominance under certain conditions.Patterns of β-AOB diversity in estuaries have been well characterized and appear to be regulated by similar mechanisms within geographically disparate systems (4, 11, 32). However, AOA distribution and their role in nitrification relative to β-AOB remain to be determined. A few studies have begun to address this question in different estuaries, but no unifying patterns or mechanisms have emerged. Although β-AOB have been well studied along estuarine salinity gradients (1, 3, 4, 7, 11, 13, 22, 33, 39) and recent studies have begun to address AOA in estuaries (1, 6, 22, 32, 33), few have investigated β-AOB in salt marshes (9), and none has included AOA.In this study, we investigated the distribution and abundance of AOA and β-AOB based on the distribution and abundance of amoA genes in salt marsh sediments dominated by different types of vegetation. Although we equate the presence of archaeal amoA genes with the genetic potential to oxidize ammonia, we acknowledge the possibility that all Archaea that have amoA genes may not all represent functional ammonia oxidizers. Vegetation patterns of New England salt marshes are strongly correlated with marsh elevation and are controlled by a combination of interspecific competition and tolerance to physico-chemical stress (28). The dominant grasses of New England salt marshes are Spartina alterniflora and Spartina patens, which typically grow as pure stands. S. alterniflora is found in two phenotypically distinct but genetically identical forms, a tall and a short growth form (34). The tall S. alterniflora grows to heights of 1 to 2 m and is typically found at the edges of the marsh and along creek banks (SAT sites), while the short-form S. alterniflora may reach heights of only 30 cm and is found in sites (SAS sites) slightly higher on the marsh where soil drainage is limited and conditions are more reduced compared to SAT sites (14). Conversely, S. patens, due to its lower tolerance of salt and more reduced conditions, is found in sites (SP sites) highest on the marsh, in areas that receive less flooding (5). Because the marsh is subjected to daily tidal fluctuations, most sites experience periods of anoxia, the degree of which depends on the marsh elevation. We hypothesized that ammonia-oxidizing communities in areas dominated by different marsh grasses would reflect the different edaphic conditions associated with each type of grass, due to differences in vertical zonation in the marsh. |
| |
Keywords: | |
|
|