首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of Bacterioneuston and Bacterioplankton Dynamics during a Phytoplankton Bloom in a Fjord Mesocosm
Authors:Michael Cunliffe  Andrew S Whiteley  Lindsay Newbold  Anna Oliver  Hendrik Sch?fer  J Colin Murrell
Institution:Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom,1. Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, United Kingdom,2. Warwick HRI, University of Warwick, Wellesbourne CV35 9EF, United Kingdom3.
Abstract:The bacterioneuston is the community of Bacteria present in surface microlayers, the thin surface film that forms the interface between aquatic environments and the atmosphere. In this study we compared bacterial cell abundances and bacterial community structures of the bacterioneuston and the bacterioplankton (from the subsurface water column) during a phytoplankton bloom mesocosm experiment. Bacterial cell abundance, determined by flow cytometry, followed a typical bacterioplankton response to a phytoplankton bloom, with Synechococcus and high-nucleic acid content (HNA) bacterial cell numbers initially falling, probably due to selective protist grazing. Subsequently HNA and low-nucleic acid content bacterial cells increased in abundance, but Synechococcus cells did not. There was no significant difference between bacterioneuston and bacterioplankton cell abundances during the experiment. Conversely, distinct and consistent differences between the bacterioneuston and the bacterioplankton community structures were observed. This was monitored simultaneously by Bacteria 16S rRNA gene terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis. The conserved patterns of community structure observed in all of the mesocosms indicate that the bacterioneuston is distinctive and nonrandom.Determining and understanding both spatial and temporal patterns in bacterioplankton community structure are a core aim of marine microbial ecology (15). Distributions of bacterioplankton over space and time can be correlated to environmental parameters, and subsequent links can therefore be made to ecosystem function. A broad range of spatial studies made on macro- (34), meso- (20), and microscales (27) have shown clear patterns in distribution of the bacterioplankton.The sea surface microlayer is part of the air-sea interface and is generally considered to be the top 1 mm or less of the ocean (26). Surface microlayers have a fundamental role in regulating transport processes between the ocean and the atmosphere (26) and are often referred to as the neuston (28, 31). For more than 25 years it has been hypothesized that the sea surface microlayer is a hydrated gelatinous layer (40) that contains surface-active organic compounds such as carbohydrates, proteins, lipids, and humic substances in relatively high concentrations (17, 45, 48). Recently, gel-like transparent expolymer particles (TEP) have been shown to be enriched in the surface microlayer, supporting the concept of a gelatinous interfacial layer (46).Bacteria present in surface microlayers or the neuston are regarded as the bacterioneuston. There are relatively few studies which have directly compared the community structure of the bacterioneuston with that of the cognate subsurface (bacterioplankton) in the marine environment. Analysis of Bacteria 16S rRNA gene clone libraries constructed using DNA isolated from surface microlayer and subsurface water (<1 m) samples from the North Sea revealed that the bacterioneuston was dominated by two operational taxonomic units which accounted for 81% of clones analyzed (13). Community structure profiling using denaturing gradient gel electrophoresis (DGGE) of the bacterioneuston at three sites around Oahu Island in the Pacific Ocean showed that the bacterioneuston forms consistent and distinct community structures. Conversely, the archaeal community structure of the same samples using Archaea 16S rRNA gene DGGE analysis did not show the same surface microlayer-specific response, indicating that bacteria and archaea respond to their environment in fundamentally different ways in the neuston (7).Other studies have, however, reported no consistent differences between the bacterioneuston and the bacterioplankton. Samples collected from two separate sites in the Mediterranean Sea were analyzed using single-strand conformation polymorphism of Bacteria 16S rRNA genes (1). The authors did not report any significant differences between the surface microlayer and subsurface samples using this community profiling method.Nonmarine studies of the bacterioneuston and Archaea communities in estuarine (10) and freshwater (5, 19) environments have also shown distinct microbial community structures present in the surface microlayer compared to those in subsurface water ≤1 m below.Recurring phytoplankton blooms are a key feature of coastal waters and strongly influence bacterioplankton community structure and succession (4, 14, 38). Phytoplankton blooms stimulate the bacterioplankton by the release of dissolved organic matter (22) or affect bacterioplankton negatively by direct competition for resources (6). Bacterioplankton community structure may also be influenced by grazing flagellates or viral lysis (47).Mesocosm experiments have been used to study plankton ecology for many decades (33). Mesocosms facilitate study of the effects of key environmental parameters, such as temperature, on plankton communities and allow the succession of natural plankton communities that resemble those found in the marine environment (11). The enclosed water mass means that experiments can be designed which manipulate physicochemical parameters to observe biological effects. Furthermore, with replicated mesocosms, the data collected can be analyzed with statistics rigorously. In this study we monitored the dynamics of the bacterioneuston and the bacterioplankton in mesocosms of fjord surface water during an artificially induced phytoplankton bloom and compared bacterial abundances and bacterial community structures in the surface microlayer and subsurface water.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号