首页 | 本学科首页   官方微博 | 高级检索  
     


Differential Lipopolysaccharide Core Capping Leads to Quantitative and Correlated Modifications of Mechanical and Structural Properties in Pseudomonas aeruginosa Biofilms
Authors:Peter C. Y. Lau  Theresa Lindhout  Terry J. Beveridge  John R. Dutcher  Joseph S. Lam
Affiliation:Biophysics Interdepartmental Group,1. Department of Molecular and Cellular Biology,2. Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W13.
Abstract:Bacterial biofilms are responsible for the majority of all microbial infections and have profound impact on industrial and geochemical processes. While many studies documented phenotypic differentiation and gene regulation of biofilms, the importance of their structural and mechanical properties is poorly understood. Here we investigate how changes in lipopolysaccharide (LPS) core capping in Pseudomonas aeruginosa affect biofilm structure through modification of adhesive, cohesive, and viscoelastic properties at an early stage of biofilm development. Microbead force spectroscopy and atomic force microscopy were used to characterize P. aeruginosa biofilm interactions with either glass substrata or bacterial lawns. Using isogenic migA, wapR, and rmlC mutants with defined LPS characteristics, we observed significant changes in cell mechanical properties among these strains compared to wild-type strain PAO1. Specifically, truncation of core oligosaccharides enhanced both adhesive and cohesive forces by up to 10-fold, whereas changes in instantaneous elasticity were correlated with the presence of O antigen. Using confocal laser scanning microscopy to quantify biofilm structural changes with respect to differences in LPS core capping, we observed that textural parameters varied with adhesion or the inverse of cohesion, while areal and volumetric parameters were linked to adhesion, cohesion, or the balance between them. In conclusion, this report demonstrated for the first time that changes in LPS expression resulted in quantifiable cellular mechanical changes that were correlated with structural changes in bacterial biofilms. Thus, the interplay between architectural and functional properties may be an important contributor to bacterial community survival.Biofilms are sessile microbial communities growing on a surface or at an interface, often enmeshed in polymeric substances. Being the predominant mode of microbial growth in nature, bacterial biofilms are particularly problematic in the context of human health, accounting for up to 80% of all bacterial infections. In industrial processes, bacterial biofilms cause corrosion and biofouling, resulting in considerable loss of productivity. In the natural environment, biofilms play a role in modulating worldwide geochemical cycles. Given the impact of biofilms in these diverse areas, the need for developing effective strategies to control them is of paramount importance. Since bacterial cell surface structures are convenient targets for control agents, their roles in influencing biofilm function and architecture warrant in-depth investigations. To date, most studies of biofilms have focused on genetic regulation, phenotypic differentiation and their contribution to antibiotic resistance. In contrast, the mechanical and structural properties that link the genotypes to phenotypes of bacterial biofilms are not well understood and rarely studied in a quantitative and correlated manner.Pseudomonas aeruginosa is a gram-negative opportunistic pathogen implicated in serious infections in patients with cystic fibrosis and immunocompromised patients. This bacterium has a relatively large genome (6.3 Mb) consistent with its propensity to utilize versatile metabolic pathways, thereby developing antibiotic resistance and producing an arsenal of virulence factors, including lipopolysaccharide (LPS) present on the cell surface. LPS is localized in the outer leaflet of the outer membrane of all gram-negative bacteria, forming the first point of contact between the bacterial cell and any surface that it colonizes or therapeutic agents. The LPS of P. aeruginosa consists of three regions: lipid A, core oligosaccharide (core OS), and O antigen. The O antigen is synthesized as two distinct forms with overlapping pathways: the shorter A-band homopolymer is the so-called “common polysaccharide antigen” among this species and consists of repeating d-rhamnose (d-Rha) subunits, while the longer B-band heteropolymer is composed of repeating tri- to pentasaccharide subunits that vary among the 20 serotypes of P. aeruginosa (42). The core OS is conceptually divided into the highly conserved inner core and the more variable outer core. Depending on the linkage of l-rhamnose (l-Rha) with two distinct d-glucose (d-Glc) residues, two main glycoforms of the core OS exist (see Fig. Fig.1A).1A). In the “capped” glycoform, l-Rha is α-1,3 linked to a d-Glc and acts as the acceptor molecule for O antigen, resulting in the production of smooth LPS. In the “uncapped” glycoform, l-Rha is α-1,6 linked to a different d-Glc and is not substituted with O antigen, resulting in the production of rough LPS (39). In addition, the presence or absence of the α-1,6 linked l-Rha substituted with a terminal d-Glc gives rise to the so-called intact or truncated outer core, respectively. The functional significance of this terminal glucose is unclear at present, although a role in host cell binding has been proposed (57).Open in a separate windowFIG. 1.Comparison of LPSs from Pseudomonas aeruginosa wild-type strain PAO1 and mutant strains with LPS core variants. (A) Schematic diagram illustrating the chemical structures of smooth LPS and rough LPS. The gray and black arrows point to the position of outer core truncation and position of O-antigen capping, respectively. (B) Silver-stained SDS-polyacrylamide gels illustrating LPS profiles of planktonic and biofilm cells. The two gray arrows and the black arrows point to the position of O antigen and position of core-plus-one entities, respectively. Planktonic cells (lanes 1 to 4) and biofilm cells (lanes 5 to 8) of strain PAO1 (P), migA mutant (M), wapR mutant (W), and rmlC mutant (R) are shown.Mechanical processes that are important in the biofilm life cycle include bacterial adhesion, cohesion, and viscoelasticity. Bacterial adhesion is a prerequisite for surface colonization and the most important functional determinant in the early stages of biofilm development. Accurate measurement of adhesion is therefore essential for monitoring the tendency of bacteria to attach to surfaces and to switch from a planktonic lifestyle to a biofilm lifestyle. Data accumulated in previous studies suggest that LPS is involved in bacterial cell adhesion to both abiotic (2, 8, 20, 32, 35, 54, 56) and biotic (17, 38, 49, 56, 57) surfaces. Moreover, environmental factors, such as growth temperature, pH, ionic strength, nutrient availability, and oxygen levels, may influence cell adhesion via modification of LPS expression and conformation (16, 36, 46, 47, 53). The effect of LPS on bacterial adhesion to various types of surfaces apparently involves distinct and complex mechanisms that remain to be elucidated.Bacterial cohesion, herein defined as cell-to-cell adherence, is crucial to the formation of microbial flocs and the growth and detachment of established bacterial biofilms. Quantification of cohesion is important for understanding biofilm biology, and such data are crucial for modeling and forecasting biofilm development so that better control strategies can be developed (55). Previous studies of biofilm cohesiveness have characterized it as highly stratified (3, 4, 18, 43), influenced by ionic strength (14, 34), proportional to shear rate (37), and often variable over 3 orders of magnitude (40, 50). Although an earlier study by Spiers and Rainey (48) provided semiquantitative measurements of the role of LPS on bacterial cohesion within a biofilm, a truly quantitative account of the effect of LPS on biofilm cohesion has not been demonstrated.Bacterial viscoelasticity refers to the combined liquid-like and solid-like characteristics in the behavior of polymeric systems such that when deformed under stress, their strain can increase over time (i.e., creep) and their original shape may be only partially restored upon stress relief (19). Although earlier reports suggested that LPS modulates bacterial cell compressibility and helps prevent catastrophic structural failure due to mechanical stress (1, 52), no direct physical evidence of its involvement in these processes has yet been presented. Therefore, monitoring biofilm viscoelasticity is crucial for demonstrating how well biofilms resist stresses, due to, for instance, fluid shear and antimicrobial peptides (5, 6). To date, quantitative data on how LPS affects viscoelastic properties of biofilms are lacking, and existing studies have merely focused on elasticity measurements (7, 52). Recently, our group has developed an atomic force microscopy (AFM)-based technique called microbead force spectroscopy (MBFS) to measure the adhesive forces and viscoelastic properties of cells within bacterial biofilms (28). In this study, we expand the application of this MBFS method to measure cohesive forces between cells at an early stage of biofilm development.Biofilm structure refers to the distribution of biomass or carbonaceous materials associated with cells (including all viable and nonviable cells and their extracellular polymeric substances) within the space occupied by a biofilm. It is known to be very heterogeneous and highly stratified, typically composed of a cohesive basal layer and a relatively fragile top layer (15, 18, 43). Using confocal laser scanning microscopy (CLSM), biofilm structure can be quantitatively described in terms of textural and volumetric parameters (11, 29). Textural parameters characterize the pattern of cell clusters and interstitial voids in a biofilm, whereas volumetric parameters describe the morphological characteristics of bacterial biofilms in three dimensions (3-D) (11). Biomass distribution is affected by the surrounding environment and may reflect fundamental processes occurring within biofilms, such as nutrient transport, accumulation rate, microbial physiology, and mechanical behavior (29). Therefore, quantifying biofilm structure by CLSM will allow us to understand the underlying processes and the relationship between biofilm architecture and behavior (15).To examine the effects of differential LPS core capping on the mechanical properties of early biofilms (here defined as confluent bacterial lawns that have just begun to develop into full-fledged biofilms) and the structural properties of mature biofilms, we compare P. aeruginosa wild-type strain PAO1 with those of its isogenic migA, wapR, and rmlC mutant strains with defects in the respective genes affecting LPS core biosynthesis (22, 31, 39, 41). The migA gene (PA0705) encodes the putative α-1,6-rhamnosyltransferase necessary for the attachment of the terminal d-Glc to the outer core (39). The wapR gene (PA5000) encodes the putative α-1,3-rhamnosyltransferase crucial to the capping of the core with O antigen (39). The rmlC gene (PA5164) encodes a dTDP-4-dehydrorhamnose 3,5-epimerase essential in the biosynthesis of TDP-l-Rha, which is the precursor for the l-Rha in the LPS core (41). Defects in migA, wapR, and rmlC mutants result in the expression of different LPS phenotypes, including a truncated outer core and/or a lack of capping by O antigen (Table (Table1).1). In this study, we test the hypothesis that LPS contributes to biofilm function and architecture through modulation of cellular mechanics and microcolony structures, thereby contributing to bacterial community survival. By correlating quantitative mechanical changes in early P. aeruginosa biofilms and structural changes in mature biofilms due to differences in LPS chemistry, we aim to elucidate how the properties of these important bacterial cell surface molecules can alter the physical nature of biofilms.

TABLE 1.

Pseudomonas aeruginosa strains used in this study
StrainCharacteristic(s)LPS phenotypebReference
PAO1P. aeruginosa wild-type strain; IATSa serotype O5A+B+; capped, intact outer coreHancock and Carey (22)
migA mutantPAO1-derived migA::Gmr knockout mutantA+B+; capped, truncated outer corePoon et al. (39)
wapR mutantPAO1-derived wapR::Gmr knockout mutantAB; uncapped, intact outer corePoon et al. (39)
rmlC mutantPAO1-derived rmlC::Gmr knockout mutantAB; uncapped, truncated outer coreLindhout et al. (31)
Open in a separate windowaIATS, International Antigenic Typing Scheme.bAB, devoid of A-band and B-band LPS; A+B+, presence of A-band and B-band LPS.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号