首页 | 本学科首页   官方微博 | 高级检索  
     


The structure of the rigor complex and its implications for the power stroke
Authors:Holmes K C  Schröder R R  Sweeney H L  Houdusse Anne
Affiliation:Max Planck Institute for Medical Research, 69120 Heidelberg, Germany. holmes@mpimf-heidelberg.mpg.de
Abstract:Decorated actin provides a model system for studying the strong interaction between actin and myosin. Cryo-energy-filter electron microscopy has recently yielded a 14 A resolution map of rabbit skeletal actin decorated with chicken skeletal S1. The crystal structure of the cross-bridge from skeletal chicken myosin could not be fitted into the three-dimensional electron microscope map without some deformation. However, a newly published structure of the nucleotide-free myosin V cross-bridge, which is apparently already in the strong binding form, can be fitted into the three-dimensional reconstruction without distortion. This supports the notion that nucleotide-free myosin V is an excellent model for strongly bound myosin and allows us to describe the actin-myosin interface. In myosin V the switch 2 element is closed although the lever arm is down (post-power stroke). Therefore, it appears likely that switch 2 does not open very much during the power stroke. The myosin V structure also differs from the chicken skeletal myosin structure in the nucleotide-binding site and the degree of bending of the backbone beta-sheet. These suggest a mechanism for the control of the power stroke by strong actin binding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号