首页 | 本学科首页   官方微博 | 高级检索  
     


Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding
Authors:Chih-Ching?Lin,Pei-Ju?Jih,Hsin-Hung?Lin,Jeng-Shane?Lin,Ling-Lan?Chang,Yu-Hsing?Shen,Shih-Tong?Jeng  author-information"  >  author-information__contact u-icon-before"  >  mailto:stjeng@ntu.edu.tw"   title="  stjeng@ntu.edu.tw"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan, Republic of China
Abstract:Wounding caused by rain, wind, and pathogen may lead plants to onset defense response. Previous studies indicated that mechanical wounding stimulates plants to generate nitric oxide (NO) and hydrogen peroxide (H2O2). In this study, the functions of NO and H2O2 after wounding in sweet potato (Ipomoea batatas cv. Tainung 57) was further analyzed. Mechanical wounding damaged cells and resulted in necrosis, but the presence of NO donors or NO scavenger might reduce or enhance the cell death caused by wounding, respectively. The amount of H2O2 induced by wounding was also decreased or increased when plants were incubated with NO donors or NO scavenger, individually. These results indicate that NO may regulate H2O2 generation to affect cell death. NO-induced proteins isolated from two-dimensional electrophoresis were identified to be Copper/Zinc superoxide dismutases (CuZnSODs). The activities of CuZnSODs and ascorbate peroxidase (APX) could be enhanced by NO. In addition, the expression of CuZnSOD and APX was induced by wounding via NO, and their expression was further stimulated by NO through the generation of cGMP. The influx of calcium ions and the activity of NADPH oxidase were also involved in the NO signal transduction pathway inducing APX expression. Collectively, the generation of H2O2 in wounded plants might trigger cell death. Meanwhile, the production of NO induced by wounding stimulated signal transducers including cGMP, calcium ions, and H2O2 to activate CuZnSOD and APX, which further decreased H2O2 level and reduced the cell death caused by wounding.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号