首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants
Institution:1. Université catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Avenue E. Mounier 53.02, B-1200 Brussels, Belgium;2. Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS 180 chemin de Tournefeuille, BP 93173 Toulouse, France;2. Keygene N.V., Wageningen, The Netherlands;3. Max Planck Institute for Chemical Ecology, Jena, Germany
Abstract:Plant domestication is assumed to result in reduced levels of defensive compounds in crops, because this makes the plants more suitable for consumption by humans and livestock. We argue that this should mainly be reflected in the concentrations of defense compounds in the plant parts that are used for consumption and not necessarily for other parts of crop plants. We tested this hypothesis for domesticated lima bean (Phaseolus lunatus), by comparing its chemical defenses against a leaf herbivore, the beet armyworm (Spodoptera exigua), and a seed predator, the beetle Zabrotes subfasciatus. For seeds and leaves we determined the concentrations of cyanogenic glycosides (CNGs) in cultivated varieties and wild populations and evaluated the preference and performance of the herbivores when exposed to leaves and seeds from wild and cultivated plants. Concentrations of CNGs were significantly different between wild and cultivated plants. In the leaves the concentration of CNGs in the cultivated varieties were more than double that of the wild leaves. In contrast, seeds from cultivated plants had up to 20 times lower CNG concentration compared to seeds from the wild populations. Insect preference and performance do not parallel the chemical data. Larvae of S. exigua preferred wild leaves but had higher survival on cultivated leaves. The beetles, however, strongly preferred seeds from cultivated plants and females developed more quickly on these seeds. We conclude that domestication of P. lunatus has altered the concentration of CNGs in both the seeds and the leaves in opposite directions. This results in differential effects on the herbivores that attack these two plant structures. The contrasting effect of domestication on different plant tissues can be explained by the fact that bean plants have been specifically selected for human consumption of the seeds. Tissue-specific effects of plant domestication on plant defenses can be expected for other crops as well.
Keywords:Cyanogenic glycosides  Domestication  Seed predator  Herbivore
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号