首页 | 本学科首页   官方微博 | 高级检索  
     


Convergent evolution of diverse Bacillus anthracis outbreak strains toward altered surface oligosaccharides that modulate anthrax pathogenesis
Authors:Michael H. Norris  Alexander Kirpich  Andrew P. Bluhm  Diansy Zincke  Ted Hadfield  Jose Miguel Ponciano  Jason K. Blackburn
Abstract:Bacillus anthracis, a spore-forming gram-positive bacterium, causes anthrax. The external surface of the exosporium is coated with glycosylated proteins. The sugar additions are capped with the unique monosaccharide anthrose. The West African Group (WAG) B. anthracis have mutations rendering them anthrose deficient. Through genome sequencing, we identified 2 different large chromosomal deletions within the anthrose biosynthetic operon of B. anthracis strains from Chile and Poland. In silico analysis identified an anthrose-deficient strain in the anthrax outbreak among European heroin users. Anthrose-deficient strains are no longer restricted to West Africa so the role of anthrose in physiology and pathogenesis was investigated in B. anthracis Sterne. Loss of anthrose delayed spore germination and enhanced sporulation. Spores without anthrose were phagocytized at higher rates than spores with anthrose, indicating that anthrose may serve an antiphagocytic function on the spore surface. The anthrose mutant had half the LD50 and decreased time to death (TTD) of wild type and complement B. anthracis Sterne in the A/J mouse model. Following infection, anthrose mutant bacteria were more abundant in the spleen, indicating enhanced dissemination of Sterne anthrose mutant. At low sample sizes in the A/J mouse model, the mortality of ΔantC-infected mice challenged by intranasal or subcutaneous routes was 20% greater than wild type. Competitive index (CI) studies indicated that spores without anthrose disseminated to organs more extensively than a complemented mutant. Death process modeling using mouse mortality dynamics suggested that larger sample sizes would lead to significantly higher deaths in anthrose-negative infected animals. The model was tested by infecting Galleria mellonella with spores and confirmed the anthrose mutant was significantly more lethal. Vaccination studies in the A/J mouse model showed that the human vaccine protected against high-dose challenges of the nonencapsulated Sterne-based anthrose mutant. This work begins to identify the physiologic and pathogenic consequences of convergent anthrose mutations in B. anthracis.

A study of the spontaneous loss of the spore coat monosaccharide anthrose suggests that convergent evolution in several anthrax strains towards increased pathogenicity could exacerbate global human and animal anthrax disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号