首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The biosynthesis of gram-negative endotoxin. Identification and function of UDP-2,3-diacylglucosamine in Escherichia coli
Authors:C E Bulawa  C R Raetz
Abstract:Escherichia coli mutants defective in the pgsB gene are phosphatidylglycerol-deficient in certain genetic settings and accumulate novel, glucosamine-derived phospholipids (Nishijima, M., and Raetz, C. R. H. (1979) J. Biol. Chem. 254, 7837-7844). The simplest of these compounds is 2,3-diacylglucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) ("lipid X" of E. coli), in which beta-hydroxymyristoyl moieties are the sole fatty acid substituents (Takayama, K., Qureshi, N., Mascagni, P., Nashed, M. A., Anderson, L., and Raetz, C. R. H. (1983) J. Biol. Chem. 258, 7379-7385). We now report a sensitive radiochemical method for detection of 2,3-diacyl-GlcN-1-P in wild type E. coli and demonstrate that there are about 4000 molecules/cell (0.02% of the total CHCl3-soluble phosphorus). In mutants bearing the pgsB1 lesion, the levels are 100- to 300-fold higher. In addition, we have discovered a novel liponucleotide, UDP-2,3-diacyl-GlcN, that also accumulates in conjunction with the pgsb1 mutation. This material represents 0.005% of the wild type phospholipid and accumulates 50- to 100-fold in the mutant. The identification of UDP-2,3-diacyl-GlcN in E. coli is based on: 1) migration of a minor 32P-labeled lipid from wild type and mutant cells with a UDP-2,3-diacyl-GlCn standard during two-dimensional thin layer chromatography; 2) susceptibility of this 32P-labeled material to cleavage by a liponucleotide-specific pyrophosphatase; and 3) chromatographic identification of 32P]UMP and 32P]2,3-diacyl-GlcN-1-P (lipid X) as the sole products of the enzymatic degradation. As shown in the accompanying article, this novel nucleotide is crucial for biosynthesis of lipid A disaccharides in extracts of E. coli and Salmonella typhimurium.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号