首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic activation of A549 human airway epithelial cells by organic dust: a study based on microphysiometry
Authors:Burvall Karin  Palmberg Lena  Larsson Kjell
Institution:National Institute for Working Life, SE-112 79 Stockholm, Sweden.
Abstract:A Cytosensor microphysiometer, which measures extracellular acidification rate (ECAR), was used to study the early metabolic activation by organic dust from a swine confinement building in a human airway epithelial cell line, A549. The dust is known to cause an intense airway inflammatory reaction following inhalation in vivo and cytokine release in vitro. Dimethyl amiloride (DMA) was used to study sodium/proton exchanger (NHE) activity in cells growing at different cell densities. Exposing cells at low density to dust induced an initial release of acid not involving NHE, followed by a sustained DMA-sensitive NHE activation. In cells near high density, NHE was not activated during exposure resulting in a modest increase in ECAR. Exposing cells at high density resulted in a bi-phasic ECAR pattern; an initial increase in proton release followed by an inhibition of ECAR below baseline. Pretreatment with pertussis toxin (PTX), an inhibitor of receptor/G(i alpha)-coupled signal transductions did not affect ECAR in low and medium density cells, but abolished the inhibition of ECAR in high-density cells. The dust did not prevent forskolin-induced cAMP accumulation and PTX did not affect cAMP in near-confluent cells suggesting the PTX-effect to be cAMP-independent. The ECAR response to organic dust was similar to that of lipopolysaccharide (LPS) except for high-density cells where PTX did not influence the LPS-induced decrease in ECAR below baseline. In summary, the organic dust induces PTX-sensitive (cAMP independent) signalling in near-confluent A549 epithelial cells and, depending on cell density opposing effects on NHE activity during exposure.
Keywords:Cytosensor  Microphysiometry  Organic dust  Airway epithelial cells  PTX  cAMP
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号