首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distal heme pocket regulation of ligand binding and stability in soybean leghemoglobin
Authors:Kundu Suman  Hargrove Mark S
Institution:Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
Abstract:Leghemoglobins facilitate diffusion of oxygen through root tissue to a bacterial terminal oxidase in much the same way that myoglobin transports oxygen from blood to muscle cell mitochondria. Leghemoglobin serves an additional role as an oxygen scavenger to prevent inhibition of nitrogen fixation. For this purpose, the oxygen affinity of soybean leghemoglobin is 20-fold greater than myoglobin, resulting from an 8-fold faster association rate constant combined with a 3-fold slower dissociation rate constant. Although the biochemical mechanism used by myoglobin to bind oxygen has been described in elegant detail, an explanation for the difference in affinity between these two structurally similar proteins is not obvious. The present work demonstrates that, despite their similar structures, leghemoglobin uses methods different from myoglobin to regulate ligand affinity. Oxygen and carbon monoxide binding to a comprehensive set of leghemoglobin distal heme pocket mutant proteins in comparison to their myoglobin counterparts has revealed some of these mechanisms. The "distal histidine" provides a crucial hydrogen bond to stabilize oxygen in myoglobin but has little effect on bound oxygen in leghemoglobin and is retained mainly for reasons of protein stability and prevention of heme loss. Furthermore, soybean leghemoglobin uses an unusual combination of HisE7 and TyrB10 to sustain a weak stabilizing interaction with bound oxygen. Thus, the leghemoglobin distal heme pocket provides a much lower barrier to oxygen association than occurs in myoglobin and oxygen dissociation is regulated from the proximal heme pocket.
Keywords:leghemoglobin  hemoglobin  myoglobin  ligand binding  stability  site‐directed mutagenesis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号