首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Accumulation and decay dynamics of coarse woody debris in a Japanese old-growth subalpine coniferous forest
Authors:Yu Fukasawa  Shingo Katsumata  Akira S Mori  Takashi Osono  Hiroshi Takeda
Institution:1. Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
2. Laboratory of Forest Ecology, Graduate School of Agricultural Science, Tohoku University, Yomogida 232-3, Naruko, Osaki, Miyagi, 989-6711, Japan
Abstract:Far less is known about the coarse woody debris (CWD) stock and decay process in temperate Asia compared with that in boreal and temperate Europe and North America. We estimated coniferous CWD stock (logs and snags), decay rate and process, and fungal species responsible for the decay process in a Japanese subalpine coniferous forest. The CWD mass was 42.4 Mg ha?1, which was the greatest among the previous data recorded in temperate Asia. The decay rate calculated using the annual input of CWD divided by CWD accumulation was 0.036 year?1, whereas the decay rate when measured chronosequentially was 0.020–0.023 year?1. The decay process was divided into two phases characterized by different dominant organic chemical constituents. In the first phase, both acid-unhydrolyzable residue and holocellulose decayed simultaneously, suggestive of the white-rot process. In the second phase, holocellulose was selectively decomposed and AUR accumulated, suggestive of the brown-rot process. Nutrients (N, P, K, Na, Mg, and Ca) were mineralized in the first phase but immobilized in the second phase. The fruiting bodies of 26 taxa of fungi were recorded as occurring on CWD in the study area. Trichaptum abietinum and T. fuscoviolaceum, which dominated in the first phase and are known as white-rot fungi, were assumed to be the main decomposers of lignocellulose in the first phase. Although no known strong wood decomposers dominated the second phase, Laetiporus sulphureus and Oligoporus caesius, known as brown-rot fungi, were expected to participate in the selective decomposition of holocellulose in the second phase.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号