首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics
Authors:Ruth G Shaw  Julie R Etterson
Affiliation:Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, 1987 Upper Buford Circle, St Paul, MN 55108, USA Department of Biology, University of Minnesota-Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN 55812-3004, USA.
Abstract:CONTENTS: Summary 752 I. Introduction 752 II. Will migration be enough? 753 III. Can adaptation proceed fast enough? 754 IV. Fitness links demographic and evolutionary processes 755 V. Experimental studies: what do they tell us and how can we improve them? 756 VI. Predicting evolutionary change based on genetic variation and natural selection 757 VII. The chronosequence approach 758 VIII. Resurrection of ancestral propagules 759 IX. The mean and variance in fitness, a link between genetics and demography 760 X. Conclusions 762 Acknowledgements 762 References 762 SUMMARY: Evolution proceeds unceasingly in all biological populations. It is clear that climate-driven evolution has molded plants in deep time and within extant populations. However, it is less certain whether adaptive evolution can proceed sufficiently rapidly to maintain the fitness and demographic stability of populations subjected to exceptionally rapid contemporary climate change. Here, we consider this question, drawing on current evidence on the rate of plant range shifts and the potential for an adaptive evolutionary response. We emphasize advances in understanding based on theoretical studies that model interacting evolutionary processes, and we provide an overview of quantitative genetic approaches that can parameterize these models to provide more meaningful predictions of the dynamic interplay between genetics, demography and evolution. We outline further research that can clarify both the adaptive potential of plant populations as climate continues to change and the role played by ongoing adaptation in their persistence.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号