首页 | 本学科首页   官方微博 | 高级检索  
     


Interactions of copper with glycated proteins: Possible involvement in the etiology of diabetic neuropathy
Authors:Eaton  John W.  Qian  Mingwei
Affiliation:(1) Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
Abstract:Humans and animals with diabetes frequently develop peripheral vascular dysfunction and peripheral neuropathies. There is accumulating evidence that impaired peripheral nerve function may derive from diminished endoneural blood flow. The decrements in nerve blood flow may, in turn, be due to diminished endothelium-dependent vasodilation. Although a number of possible causes of this defective vasodilation have been suggested, none has been definitely proven. Regardless of the precise cause, the impaired vasodilatory activity may reflect diminished availability of endothelium-derived relaxing factor (EDRF), variously thought to be nitric oxide or thiol adducts of nitric oxide. Other investigators have reported that administration of transition metal chelators to diabetic rats corrects EDRF-mediated arterial relaxation and restores both neural blood flow and nerve conduction velocity, suggesting the involvement of transition metals. Our investigations center about the hypothesis that glycated proteins bind transition metals such as copper and iron, and that such 'glycochelates' accumulate within the vasculature in diabetes and catalytically inactivate EDRF. In partial support of this hypothesis: (1) Glycated albumin binds bsim 3-fold greater amounts of both copper and iron. (2) Copper bound to glycated albumin remains redox active (e.g. capable of supporting the oxidation of ascorbic acid). (3) Copper and copper-containing glycochelates cause the rapid decomposition of one putative form of EDRF, nitrosocysteine. (4) The amount of exchangeable (i.e. chelatable) copper in the plasma of diabetic rats is approximately twice that in normal rat plasma. (5) Similarly, tail tendons of diabetic animals have about twice as much bound copper as do tendons of normal rats. (6) Implants bearing adsorbed glycated albumin placed in the peritonea of normal mice for 48 h accumulate bsim 5 times as much bound copper as do implants coated with control albumin. Overall, these observations support – but do not conclusively prove – the hypothesis that transition metals such as copper, bound to glycated proteins, may blunt normal EDRF-dependent relaxation of diabetic arteries and provide a rationale for the use of transition metal chelators in the therapy of diabetic vasculopathy and neuropathy.
Keywords:endothelium-derived relaxing factor  diabetic neuropathy  copper  nitrosothiol  nitrix oxide  glycation  glycochelates
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号