首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima
Authors:Brodribb Tim J  Holbrook N Michele  Zwieniecki Maciej A  Palma Beatriz
Institution:Dept. Plant Science, University of Tasmania, GPO 252-55, Hobart 7000, Australia. brodribb@fas.harvard.edu
Abstract:* The hydraulic plumbing of vascular plant leaves varies considerably between major plant groups both in the spatial organization of veins, as well as their anatomical structure. * Five conifers, three ferns and 12 angiosperm trees were selected from tropical and temperate forests to investigate whether the profound differences in foliar morphology of these groups lead to correspondingly profound differences in leaf hydraulic efficiency. * We found that angiosperm leaves spanned a range of leaf hydraulic conductance from 3.9 to 36 mmol m2 s-1 MPa-1, whereas ferns (5.9-11.4 mmol m-2 s-1 MPa-1) and conifers (1.6-9.0 mmol m-2 s-1 MPa-1) were uniformly less conductive to liquid water. Leaf hydraulic conductance (Kleaf) correlated strongly with stomatal conductance indicating an internal leaf-level regulation of liquid and vapour conductances. Photosynthetic capacity also increased with Kleaf, however, it became saturated at values of Kleaf over 20 mmol m-2 s-1 MPa-1. * The data suggest that vessels in the leaves of the angiosperms studied provide them with the flexibility to produce highly conductive leaves with correspondingly high photosynthetic capacities relative to tracheid-bearing species.
Keywords:angiosperms  conifers  ferns  hydraulic conductance  leaf hydraulics  photosynthesis  stomatal coordination
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号