首页 | 本学科首页   官方微博 | 高级检索  
     


Patterns of univariate and multivariate plasticity to elevated carbon dioxide in six European populations of Arabidopsis thaliana
Authors:Mark Jonas  Brandon Cioce
Abstract:The impact of elevated carbon dioxide on plants is a growing concern in evolutionary ecology and global change biology. Characterizing patterns of phenotypic integration and multivariate plasticity to elevated carbon dioxide can provide insights into ecological and evolutionary dynamics in future human‐altered environments. Here, we examined univariate and multivariate responses to carbon enrichment in six functional traits among six European accessions of Arabidopsis thaliana. We detected phenotypic plasticity in both univariate and multivariate phenotypes, but did not find significant variation in plasticity (genotype by environment interactions) within or among accessions. Eigenvector, eigenvalue variance, and common principal components analyses showed that elevated carbon dioxide altered patterns of trait covariance, reduced the strength of phenotypic integration, and decreased population‐level differentiation in the multivariate phenotype. Our data suggest that future carbon dioxide conditions may influence evolutionary dynamics in natural populations of A. thaliana.
Keywords:   Arabidopsis thaliana     common principal components analysis  eigenvalue variance  elevated carbon dioxide  global climate change  multivariate phenotypic plasticity  phenotypic integration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号