首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Developmental Deformity Due to scalloped Non‐Function in Drosophila Brain Leads to Cognitive Impairment
Authors:Basavanahalli Nanjundaiah Rohith  Baragur Venkatanarayanasetty Shyamala
Abstract:Neural identity and wiring specificity are fundamental to brain function. Factors affecting proliferation of the progenitor cells leading to an expansion or regression of specific neuronal clusters are expected to challenge the process of formation of precise synaptic connections with their partners and their further integration to result in proper functional neural circuitry. We have investigated the role of scalloped, a Hippo pathway gene in Drosophila brain development and have shown that its function is critical to regulate proliferation of Mushroom Body Neuroblasts and to limit the neuronal cluster size to normal in the fly brain. Here we investigate the consequent effect of the anatomical phenotype of mutant flies on the brain function, as exemplified by their cognitive performance. We demonstrate that the neural expansion in important neural clusters of the olfactory pathway, caused due to Scalloped inactivation, imparts severe disabilities in learning, short‐term memory and long‐term memory. Scalloped knockdown in αβ Kenyon Cell clusters drastically reduces long‐term memory performance. Scalloped deficiency induced neural expansion in antennal lobe and ellipsoid body neurons bring down short‐term memory performance significantly. We also demonstrate that the cognitive impairments observed here are not due to a problem in memory formation or execution in the adult, but are due to the developmental deformities caused in the respective class of neurons. Our results strongly indicate that the additional neurons generated by Scalloped inactivation are not synergistically integrated into, but rather perturb the formation of precise functional circuitry.
Keywords:   Drosophila        scalloped     learning  memory  brain development  TEAD  mushroom body size  olfactory neuron  cognitive behavior
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号