首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis by riboflavin and iron in riboflavin-deficient mutants of Pichia guilliermondii yeast.
Authors:G M Shavlovsku  E M Logvinenko  D Schlee  L V Koltun
Abstract:The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction to flavinogenesis. It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation. 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-methyl-8-trifluoro-methyl-10-(beta-hydroxyethyl)izoalloxazine and galactoflavin exerted only a slight effect on this process. The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2'-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect. The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号