首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quorum sensing and virulence regulation in Xanthomonas campestris
Authors:He Ya-Wen  Zhang Lian-Hui
Institution:Institute of Molecular and Cell Biology, Singapore, Singapore
Abstract:It is now clear that cell–cell communication, often referred to as quorum sensing (QS), is the norm in the prokaryotic kingdom and this community-wide genetic regulatory mechanism has been adopted for regulation of many important biological functions. Since the 1980s, several types of QS signals have been identified, which are associated commonly with different types of QS mechanisms. Among them, the diffusible signal factor (DSF)-dependent QS system, originally discovered from bacterial pathogen Xanthomonas campestris pv. campestris , is a relatively new regulatory mechanism. The rapid research progress over the last few years has identified the chemical structure of the QS signal DSF, established the DSF regulon, and unveiled the general signaling pathways and mechanisms. Particular noteworthy are that DSF biosynthesis is modulated by a novel posttranslational autoinduction mechanism involving protein–protein interaction between the DSF synthase RpfF and the sensor RpfC, and that QS signal sensing is coupled to intracellular regulatory networks through a second messenger cyclic-di-GMP and a global regulator Clp. Genomic and genetic analyses show that the DSF QS-signaling pathway regulates diverse biological functions including virulence, biofilm dispersal, and ecological competence. Moreover, evidence is emerging that the DSF QS system is conserved in a range of plant and human bacterial pathogens.
Keywords:DSF  cell–cell communication  c-di-GMP  two-component system  xanthan
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号