首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of hypertonicity and colchicine on intramembranous particle aggregation in toad urinary bladder
Authors:Max Dratwa  C Craig Tisher MD
Institution:(1) Division of Nephrology, Department of Medicine, Duke University Medical Center, Box 3014, 27710 Durham, N.C., USA;(2) Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA;(3) Present address: Service de Médecine, Hôpital Brugmann, University of Brussels, Brussels, Belgium
Abstract:Summary Colchicine, an agent which disrupts microtubules, inhibits the vasopressin (VP)-induced increase in water permeability as well as intramembranous particle (IMP) aggregation in the luminal plasma membrane of granular cells of toad urinary bladder. However, the hydroosmotic response induced by serosal hypertonicity is not affected by colchicine. The present investigation was initiated to establish whether serosal hypertonicity is associated with IMP aggregation and whether the aggregation, if present, is altered by colchicine. The experimental half of paired hemibladders from the toad, Bufo marinus, treated with 0.1 mM colchicine for 4 h prior to exposure to serosal mannitol (240 mM) demonstrated no significant difference in osmotic water How (Jv) (1.03 × 0.18 vs. 1.13 ± 0.22mgrl · min–1 · cm–2; p>0.20) when compared with control hemibladders. Similarly, comparison of control and colchicine-treated bladders revealed no difference in the number of IMP aggregation sites per area of membrane (17.8 ± 2.0 vs. 24.7 ± 3.5/100mgrm; p>0.10), the relative area of membrane occupied by these sites (0.30 ± 0.06 vs. 0.39 ± 0.07%; p>0.10) or the mean size of the aggregates (17.0 ± 1.4 vs. 15.8 ± 1.0 × 103 mgrm2; p > 0.20). These results indicate that in toad bladder the increase in Jv induced by serosal hypertonicity is associated with IMP aggregation. Secondly, an intact microtubule system is not required to induce the hydroosmotic or the aggregation responses. If, as has been proposed, the cellular actions of VP and serosal hypertonicity share a common pathway to bring about an increase in osmotic water permeability and cause IMP aggregation in the luminal membrane of the granular cell, the present results suggest that the pathway begins at a step subsequent not only to the generation of cAMP, but also beyond the involvement of the microtubule system.This work was supported in part by U.S. Public Health Service Grant AM 13845. Dr. Dratwa was supported through a U.S. Public Health Service International Research Fellowship F05TW2447. The authors gratefully acknowledge the technical assistance of Mrs. Helen Parks, Mr. Isaiah Taylor, Mrs. Betty Waller, and Mrs. Jessie Calder
Keywords:Toad urinary bladder  Colchicine  Hypertonicity  Freeze-fracture  cAMP
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号