首页 | 本学科首页   官方微博 | 高级检索  
     

基于两级分段式算法的卷积神经网络的浮游有孔虫自动鉴定*
引用本文:熊连桥,李建平,谢晓军,岳翔,呼和,方培岳,白海强,张东. 基于两级分段式算法的卷积神经网络的浮游有孔虫自动鉴定*[J]. 古生物学报, 2021, 60(4): 616-623
作者姓名:熊连桥  李建平  谢晓军  岳翔  呼和  方培岳  白海强  张东
作者单位:1 中海油研究总院有限责任公司, 北京 100028;
基金项目:“十三五”国家科技重大专项“中国近海富烃凹陷优选与有利勘探方向预测(2016ZX05024002)”支持
摘    要:有孔虫个体微小、数量众多、地理分布广、演化迅速, 是记录海洋沉积环境的重要载体, 在海相生物地层划分和对比中具有十分重要的作用。因有孔虫属种众多, 传统的属种鉴定需要经验丰富的专业人员进行人工鉴定且耗时较长, 此外人工鉴定古生物面临人才匮乏和工作量大等问题。卷积神经网络在计算机视觉领域的应用可较好的解决上述问题。利用古生物专家对中新世浮游有孔虫化石标注为指导, 根据有孔虫化石不同方向的视角分类, 结合卷积神经网络算法, 开发了有孔虫化石图像识别系统。研究发现, 通过有孔虫化石腹视、缘视和背视角度分类, 采取两级分段式鉴定算法对中新世浮游有孔虫属一级进行识别, 属一级鉴定准确率达到82%左右。

关 键 词:自动鉴定 卷积神经网络 浮游有孔虫 古环境 中新世

Automatic identification of planktonic foraminifera using convolutional neural networks based on two stage-segmentation algorithm
XIONG Lian-qiao,LI Jian-ping,XIE Xiao-jun,YUE Xiang,HU He,FANG Pei-yue,BAI Hai-qiang,ZHANG Dong. Automatic identification of planktonic foraminifera using convolutional neural networks based on two stage-segmentation algorithm[J]. Acta Palaeontologica Sinica, 2021, 60(4): 616-623
Authors:XIONG Lian-qiao  LI Jian-ping  XIE Xiao-jun  YUE Xiang  HU He  FANG Pei-yue  BAI Hai-qiang  ZHANG Dong
Affiliation:1 CNOOC Research Institute Co. Ltd., Beijing 100028, China; 2 School of Earth Sciences, East China University of Technology, Nanchang 330013, China; 3 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China;4 Victorysoft Co. Ltd., Dongying, Shandong 257000, China
Abstract:Foraminifera are characterized by their small size, abundance, wide distribution, and quick evolution. They provide important information about the sedimentary environment in the ocean and are significant for biostratigraphic division and correlation in marine facies. Traditional identification of foraminifera requires experts with rich experiences and is very time consuming. Fossil identification by human faces lots of problems such as the lack of talents, the amount of work, and communication difficulties. Convolution neural network algorithm, having been widely applied in computer visual identification field, can solve these problems effectively. Guided by labeled Miocene planktonic foraminifera, we develop an image recognition system by integrating different visual angles of the fossils and convolution neural network algorithm. The results indicate that, by applying the algorithm of two stage-segmentation, the fossils can be identified at generic level using the images of the umbilical, spiral, and edge views of the specimens. The identification accuracy of the computer model at generic level for the Miocene planktonic foraminifera can reach about 82%.
Keywords:automatic identification   convolution neural network   planktonic foraminifera   palaeoenvironment   Miocene
点击此处可从《古生物学报》浏览原始摘要信息
点击此处可从《古生物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号